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A number of algoritbms for recursive computation of the 
discrete cosine transform (DCT) have been developed 
recently. This paper presents a new method for computing 
the discrete cosine transform and its inverse using 
Bakhvalov’s algorithm, a method developed for evaluation 
of a polynomial at a point. In this paper, we will focus on 
both the application of the algorithm to the computation of 
the IXT-I  and its complexity. In addition, Bakhvalov’s 
algorithm is compared with Clenshaw’s algorithm for the 
computation of the DCT. 

1. INTRODUCTION 

The discrete cosine transform (DCT) is asnmonly used in 
signal processing, signal compression, image processing, 
and communication systems [l]. Researchers have 
developed efficient algorithms for computing the forward 
and inverse discrete transforms. These algorithms are 
similar to the fast Fourier transform (Fn? algorithms for 
computing the discrete Fourier transform (DFT). 
Specifically, they are more appropriate for minimizing the 
complexity of computations [2,3]. 

Wang and Hunt have shown that for Markovian signals 
with correlation coefficient of less than 0.8, the symme~cal 
XT p - I )  has better performance than the DCT-II 141. 
In addition, the DCT-I has been used to compute the real 
discrete Fourier transform [SI. The essential computation in 
all these transforms is of the form 

N 

Y ( k )  = &(n) cos@m IN) (1) 
n=i) 

for k =0, l,...,N. 

This paper will focus on the recursive computation of 
the symmetric discrete cosine transform (IXT-I) using a 
computational method developed by Bakhvalov for the 
evaluation of an Nth order polynomial at a point [6]. This 

method developed for polynomial evaluation is more 
accmte numerically than other methods in certain cases 
[q. The back-to-front computational method computes the 
sum of a sequence of numbers by adding small numbers 
first to minimize the round-off errors. Kronsjo [q presents 
an upper bound for the round-off error. Bakhvalov’s 
method requires additional adders and dividers by 2 
compared with Clenshaw’s methods [5,6]. 

Since both Bakhvalov’s and Clenshaw’s algorithm are 
recursive, they are easily implemented on parallel 
computing platforms as well as VLSI and Eeld 
Programmable Gate Arrays CFpGAS). 

2. Computation of the Dk&te cosiw TransiOrm 

The symmetric discrete cosine transform (DCT-I) [l, 7 of 
N+1 data points y (0), y (l),. .., y (N) is given by 

N 

Y ( k )  = (21 N Y ” a ,  z a , y ( n )  cos@m IN) 

y(n)  = ( 2 / N ) ” z ~ ~ a , Y ( k ) c o s ~ z l N )  (3) 

(2) 
rr=o 

and its inverse is given by 
N 

k=O 
fork, n =O. 1, ..l N, 
where 

=Y& 
when p=OorNand 

a p  =1 

when 
p # Oor p # N . 

3. BARBVALOV’SALGORITETMMIREVALUA~G 
POLYNOMIALS 



constants, ramps, parabolas, exponentials and random sets 
(uniform distributions). Trials were run on each set using 
256,512 and 1024 data points and several different ranges 
for the amplitudes. 

sorted direct implementation of 
equation (3) as the reference for numerical accuracy. The 
product terms in the direct implementation of the DCT were 
sorted and added from smallest to largest values to 
minimize mmd-off error when computing the partial sums. 

y(O), y( I), y(2) . . .. Y(N-1) for which the numerical muracy 

y(n) 
oI+ 
Wr3 

)’(@ 

We used the 

1 Table 1 shows the inputs with N data points, 

F w  3: Recursive structure of algorithms 

4. COMPWTATION OF O T a w  FORMS OF Dcrs 

The most commonly used D(X is the DCT-II. Wang e t  aL 
[8] showed that the DCT of N data points y(O), y(l), ..., 
y(N-1) can be expressed as 

N - l  

Y ( k ) = ( 2 / N )  ykCy(N-l-n)cosp(n+l/2)Z/~] u) 
n=Cl 

N-l 

y(n) = (-l)n 

forkn =0,1, ..., N-1, 
where yk= M if k=O and 1 otherwise. 

Y(N -1- k) sin[(k +l)(n +1/ 2 ) ~  / rJI (8) 
k-0 

Using the relationships of equations (9) and (lo), 
equations (7) and (8) can be put in the form of equation (2), 
the symmetric DCI form [Z91. 

of Bakhvalov’s and Clenshaw’s methods were computed 
using Matlab, where u(n) is the unit step sequence. The 
entries under Bakhvalov indicate the cases where this 
method was more accurate than Clenshaw’s. Similarly, the 
entries under Clenshaw indicate the cases where this 
method was more accurate than Bakhvalov’s. Both 
methods were within approximately one percent of each 
other. It is difficult to know in advance which method will 
produce more accurate results. 

proved to be quite accurate. One method occasionally 
proved to be superior for a given group of data sets, for 
example Clenshaw’s method when used on a ramp and 
Bakhvalov’s for unit steps of length 1024. 

In addition, we tested 50 random input 
sequences of length 256,512, and 1024 using uniformly 
distributed (0,l) values. The MSE for Clenshaw’s was 
lower in 27 cases for length 256 and 32 cases for length 
512. The MSE was lower for Bakhvalov’s method in 29 
cases for length 1024. 

Both Bakhvalov’s and Clenshaw’s methods 

6. SUMMARY 

( N + 1 ) / 2  c y ( n )  cos w(k + 1 / 2 )  = 
k=l 

(N-I)/Z 

cos( w / 2 )  c j q n )  cos( wk) 
k =O 

( N + l )  I2 

y (n) s in  w ( k + 1 / 2 ) =  
k=l 

( N + 1 ) / 2  

sin( w / 2 )  c y ( n ) C O S (  wn) 
k =O 

(9) 

We presented a new method for the computation of the 
recursive ymmetric discrete cosine transform based on 
Bakhvalov’s method for evaluating a polynomial at a point. 
It is a back-to-front computational method and easily 
implemented on parallel platforms and hardware. When 
compared with Clenshaw’s methd,  the recursive part of 
both algorithms has the same complexity. Both 
Bakhvalov’s and Clenshaw’s methods can be used to 
compute other forms of discrete cosine transforms. In 
addition, we compared the numerical accuracy of the two 

(10) methods. 
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The mean square WE) Of Bakhvalov’s and 
Clenshaw’s methods were calculated for various types of 
signals using Matlab. The DCTS were computed for 


